SDC

  • Menü
    • Teknik Analiz
    • BorsaPin
    • Bitmeyen Senfoni
    • Halet-i Ruhiye
    • Anlık Tepkiler
    • Teknoloji
    • Karma Karışık
  • Hakkında
  • İletişim
  • BorsaPin
  • Home
  • Menü
    • Teknik Analiz
    • BorsaPin
    • Bitmeyen Senfoni
    • Halet-i Ruhiye
    • Anlık Tepkiler
    • Teknoloji
    • Karma Karışık
  • Hakkında
  • İletişim
  • BorsaPin

Polinomsal Regresyon Nedir? 1

Trend Eğrilerini Matematikle Yakalamak : Polinomsal Regresyon ile Teknik Analiz

05 Nisan 2025 BorsaPin, İndikatör, Teknik AnalizPolinomsal Regresyon Nedir?

Finansal piyasalarda teknik analiz, çoğu zaman doğrusal (lineer) yaklaşımlarla sınırlandırılır: basit trend çizgileri, hareketli ortalamalar, regresyon kanalları… Ancak piyasalar, doğası gereği doğrusal olmayan (non-linear) davranışlar sergiler.

İşte tam bu noktada polinomsal regresyon (Polynomial Regression) devreye girer. Bu yöntem, fiyat serisini eğri formunda modelleyerek daha esnek ve gerçekçi trend yorumları sunar.

Bu yazıda polinomsal regresyonun ne olduğu, nasıl hesaplandığı, finansal grafikte nasıl kullanıldığı ve hangi durumlarda işe yaradığı detaylı şekilde anlatılacaktır.


Polinomsal Regresyon Nedir?

Polinomsal regresyon, bağımlı bir değişkeni (örneğin kapanış fiyatı) zamana karşı bir polinom fonksiyonu ile modellemeye çalışan istatistiksel bir tekniktir.

Genel Form:

  • y: Tahmin edilen fiyat
  • x: Zaman (örneğin bar numarası)
  • n: Polinomun derecesi (2: parabol, 3+: eğri)

Polinomsal Regresyonun Teknik Analizde Kullanım Amaçları

Amaç Açıklama
Trend eğrisini çizmek Fiyat serisinin eğilim yönünü eğrisel şekilde modellemek
Dönüş noktalarını saptamak Eğrinin lokal maksimum/minimum noktaları potansiyel dönüş alanlarını verir
Trendin hızını ve yönünü analiz etmek Eğrinin eğimi ve derecesi bu konuda ipuçları verir
Fiyat sapmalarını analiz etmek Gerçek fiyat ile regresyon eğrisi arasındaki farklar aşırılık göstergesi olabilir

Hangi Derece Ne Anlama Gelir?

Polinom Derecesi Teknik Anlamı Kullanım Senaryosu
1 (Lineer) Basit yükselen/düşen trend Doğrusal regresyon kanalı
2 (Parabolik) Dip/tepe oluşumları, dönüş eğilimleri Orta vadeli dönüşler
3–4 (Kübik / 4. derece) Trend içinde minör dalgalar, Elliott analizi Dalga yapısı çıkarımı
5+ Çok kısa vadeli dönüşler ve gürültü filtreleme Algoritmik stratejiler (dikkatli kullanılmalı)

Uyarı: Polinom derecesi yükseldikçe overfitting riski artar. Dengeli seçim yapılmalıdır.


Polinomsal Regresyon Nasıl Yorumlanır?

  1. Yukarı eğimli eğri: Alım yönlü momentum vardır.
  2. Aşağı eğimli eğri: Satış baskısı hâkimdir.
  3. Eğrinin iç bükeyliği değişiyorsa: Trend dönüşü yakın olabilir.
  4. Fiyat, eğriden çok sapıyorsa: Aşırı alım/satım durumu oluşmuş olabilir.

Polinomsal Regresyon ile Teknik Analize Uygulama Örnekleri

1 Parabolik Trend Tahmini (n=2)

Dipten dönen bir hisse senedinde, fiyatlar ikinci derece eğriyle modellenirse yukarı kıvrılan bir parabol çizilir → trend dönüşü teyit edilmiş olabilir.

2 Elliott Dalga Tahmini (n=3–4)

Fiyatın düşük-dalga-yüksek-dalga yapısı, 3. veya 4. derece bir eğriyle oldukça yakın şekilde yakalanabilir.

3 Aşırı Bölge Belirleme (n=2+)

Eğri ile gerçek kapanış fiyatı arasındaki farkın standardize edilmiş hali (Z-score gibi) aşırılık göstergesi olabilir.


Polinomsal Regresyon ile Kodlama (Python Örneği)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

# --- Veriyi Yükle ---
df = pd.read_excel("your_stock_data.xlsx")

# "DATE" sütunu tarih formatına çevrilsin
df["DATE"] = pd.to_datetime(df["DATE"])

# --- Bağımlı ve bağımsız değişkenler ---
y = df["CLOSING_TL"].values  # Kapanış fiyatları
x = np.arange(len(y)).reshape(-1, 1)  # 0,1,2,... şeklinde indeks

# --- Polinom regresyon (3. dereceden) ---
poly = PolynomialFeatures(degree=3)
X_poly = poly.fit_transform(x)
model = LinearRegression().fit(X_poly, y)

# --- Tahmin ---
y_pred = model.predict(X_poly)

# --- Grafik ---
plt.figure(figsize=(10, 5))
plt.plot(df["DATE"], y, label="Gerçek Fiyat", color="blue")
plt.plot(df["DATE"], y_pred, label="Polinomsal Regresyon (d=3)", linestyle="--", color="red")
plt.legend()
plt.title("Polinomsal Regresyon ile Trend Analizi")
plt.xlabel("Tarih")
plt.ylabel("Fiyat (TL)")
plt.grid(True)
plt.show()

 

Avantajları

  • Trendin eğrisel doğasını yakalayabilir
  • Dönüş noktalarını öngörebilir
  • Dalga analizinde matematiksel zemin oluşturur
  • Fiyat sapmalarını görünür kılar

Dezavantajları

  • Yüksek derecelerde overfitting riski taşır
  • Yön değil sadece yapı verir (sinir ağı gibi karar vermez)
  • Standart teknik analiz araçlarına entegre etmek zordur

Ne Zaman Kullanılmalı?

Durum Kullanım
Belirsiz trend yönü 2. veya 3. derece regresyon eğrisi
Dalgalı piyasa 3–4 derece trend eğrisi analizi
Tepe/dip analizi 2. derece regresyon yeterlidir
Otomatik trade 3+ dereceler + filtrelerle

Sonuç

Polinomsal regresyon, klasik teknik analiz araçlarının ötesine geçerek piyasa davranışını eğrisel ve daha doğal biçimde modellemek için etkili bir araçtır. Özellikle trendin yönü ve dönüş ihtimali hakkında daha rafine bir bakış sunar.

Ancak her güçlü araç gibi, dikkatli kullanılmalıdır. Gereksiz derecede yüksek polinomlar, yanıltıcı olabilir. Bu nedenle regresyon eğrisi, diğer teknik sinyallerle (RSI, MACD, Bollinger, hacim) birlikte kullanılmalıdır.

Etiketler
Teknik AnalizaşkPythonhisse senedi analiziEma AlignmentÜstel Hareketli OrtalamaPine Scripthayattrend analizipivotEmaallahalgoritmik tradingtrend takibiyatırım stratejisiBorsaPinotomatik analizpiyasa momentumuyatırım stratejileriborsa eğitimifinansal analizborsa stratejileriborsaPython ile BIST verisi çekmePython teknik analizPython borsa analiziPearson korelasyonuStop-Lossİdeal EmadirençdestekFibonacciİdeal Ema UpTrading ViewCem Sultansonbaharmuhsin yazıcıoğlukehanetözlemhayalmasalatatürkistanbulfiravunPhp Melody
Arşiv
  • Ağustos 2025
  • Temmuz 2025
  • Nisan 2025
  • Şubat 2025
  • Ocak 2025
  • Kasım 2024
  • Ekim 2024
  • Temmuz 2024
  • Mart 2024
  • Ocak 2023
  • Ağustos 2018
  • Temmuz 2016
  • Kasım 2015
  • Kasım 2014
  • Aralık 2013
  • Eylül 2013
  • Kasım 2012
  • Ekim 2012
  • Haziran 2011
  • Mart 2011
  • Şubat 2011
  • Ocak 2011
  • Aralık 2010
  • Kasım 2010
  • Eylül 2010
  • Ağustos 2010
  • Temmuz 2010
  • Haziran 2010
  • Mayıs 2010
  • Nisan 2010
  • Mart 2010
  • Şubat 2010
  • Ocak 2010
  • Aralık 2009
  • Kasım 2009
  • Ekim 2009
  • Eylül 2009
  • Ağustos 2009
  • Temmuz 2009
  • Haziran 2009
  • Mayıs 2009
  • Nisan 2009
  • Mart 2009
  • Şubat 2009
  • Ocak 2009
  • Aralık 2008
  • Kasım 2008
Sponsor Bağlantılar
Kategoriler
  • Anlık Tepkiler
  • Bilinçaltı Sayıklamaları
  • Bitmeyen Senfoni
  • Blog
  • BorsaPin
  • Bu nedir ?
  • Code is prority
  • Halet-i Ruhiye
  • İndikatör
  • Karma Karışık
  • Pine Script
  • Python
  • Teknik Analiz
  • Teknoloji
  • Trading View
  • Wordpress
  • Telegram
  • YouTube
Son Yorumlar
  • PHP Mobil Cihazları yönlendirme için Azmi Güneş
  • Son bir hatıra için sdc
  • Arkadaşlık siteleri ve Tuzakları için can
  • Windows 7’de EasyPHP kurulumu (resimli anlatım) için mustafa
  • Bir daha sorgulayın kendinizi.. için Abdullah Çağrı ELGÜN


Borsapin Proje Google Drive

Sponsor Bağlantılar
Sponsor Bağlantılar
.

.

.

.

2025 © SDC